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GROWER SUMMARY 

Headline 

The project successfully developed fast techniques for capturing changes in the thermal 

profile of plant canopies under variable environmental conditions with an average accuracy 

of more than 95% providing the potential for early diagnosis of water stress and disease 

outbreaks using combination of thermal and stereo 3D imaging. 

Background 

It has been shown by researchers that thermal imaging can be used for stress detection 

and early detection of disease in plants. In a recent study, it has been shown that image 

analysis can be used to provide a consistent, accurate and reliable method to estimate 

disease severity (Sun, Wei, Zhang, & Yang, 2014). Multi-modal imaging has been used by 

researchers in the past for determining the quality of crop. Among various imaging 

techniques, thermal imaging has been shown to be a powerful technique for detection of 

diseased regions in plants (Belin, Rousseau, Boureau, & Caffier, 2013). One of the major 

problems associated with thermal imaging in plants is temperature variation due to canopy 

architecture, leaf angles, sunlit and shaded regions, environmental conditions and the depth 

(distance) of plant regions from the camera (Jones, 2002). We aimed to combine 

information of stereo visible light images with thermal images to overcome these problems 

and present a method for automatic detection of disease in plants using machine learning 

techniques. Our results show that the proposed technique can be applied for fast and 

accurate scanning of a crop for detection of diseased plants. 

Summary 

An experimental setup was designed and developed at the Department of Computer 

Science, University of Warwick, UK, to simultaneously acquire visual and thermal images of 

diseased/healthy plants. The imaging setup consisted of two visible light imaging cameras 

(Canon Powershot S100), and a thermal imaging camera (Cedip Titanium). The experiment 

was carried out on tomato plants (cultivar Espero) in a controlled environment. Of 71 plants, 

54 plants were artificially inoculated on day 0 with the fungus Oidium neolycopersici which 

causes powdery mildew disease, whereas the remaining 17 plants were not inoculated. The 

disease symptoms that developed consisted of white powdery spots (first appearing after 

approx. 7 days) that expanded over time and eventually caused chlorosis and leaf die-back. 

As part of pre-processing work, we have introduced a novel technique for alignment of 

thermal and visible light images of diseased plants.  
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(a) Visible light image. (b) Thermal image. (c) Overlay of thermal image and the corresponding 

visible image after alignment. 

We also present technique for 3D modelling of diseased plants and compare it with the 

existing state of the art methods. After pre-processing, we use machine learning techniques 

and combine thermal and visible light image data with depth information to detect plants 

infected with the tomato powdery mildew fungus Oidium neolycopersici. We present a 

technique which can detect diseased plants using thermal and visible light imagery with an 

average accuracy of detection more than 95%. In addition, we show that our method is 

capable of identifying plants which were not originally inoculated with the fungus at the start 

of the experiment but which subsequently developed disease through natural transmission. 

 

Plant #p47 shown for illustrative purpose the plant was not inoculated with any disease but 

later showed symptoms of the disease and was successfully captured by our algorithm. 

Although we can use the same technique across different crops, our technique will need 

further development on different plants and different diseases since different plants may 

respond differently in terms of thermal signature to the same disease and therefore further 

testing is necessary before application. The approaches presented in this work have been 

(a) (b) (c) 
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tested on spinach crop in real world environment and tomato plants in a controlled 

environment. However, these approaches can be extended to different type of crop but 

need to be tested on multiple types of disease with multiple control treatments at a larger 

scale before they can be employed in a real world setting. 

Financial Benefits 

Early and accurate detection of stress and disease regions in a crop can help growers take 

timely action against the disease/stress. In the previous report (CP60a, Year 2 report, 2013) 

we had shown that we can efficiently and accurately identify stress regions in a crop with 

the help of thermal imaging. Good irrigation strategies in turn can help the grower to get 

optimal crop yield i.e., little or no loss of plants through over or under watering.  In this 

report, we have shown the strength of thermal and stereo visible light imaging systems for 

early disease detection. In this report, we have shown that we can detect the onset of 

powdery mildew disease before the visible symptoms appear, a disease which can cause 

60% yield loss in extreme cases during epidemic onset1. Early disease detection can help to 

avoid any possible crop yield loss. Thermal imaging can also be used for more efficient use 

of fungicides by optimising spray quantity and timing or it can be used to spray only ‘disease 

hotspots’ in glasshouse. The additional information which comes from 3D map has been 

shown to increase the accuracy of disease detection and will definitely bring more financial 

benefits to the grower. A good thermal imaging camera is available in the price range of 

£15000 to £30000, with high end cameras having the ability to remotely transfer live 

images, thermal and colour, via Wi-Fi networks on computer screens or tablet (e.g. iPad). A 

camera can be mounted on a rig on moving boom e.g. on a water boom in Venlo type 

glasshouses to scan the crop regions. 

Action Points 

Glasshouse businesses should consider options for installing an overhead system for 

monitoring their crop with the help of a mounted thermal and colour imaging camera. The 

cost of the imaging system is negligible compared to the financial benefits which can be 

obtained using such kind of systems. 

                                                

1
 http://www.plantwise.org/KnowledgeBank/Datasheet.aspx?dsid=22075  

http://www.plantwise.org/KnowledgeBank/Datasheet.aspx?dsid=22075
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SCIENCE SECTION 

Introduction 

Thermal imaging may assist in early detection of disease and stress in plants and canopies 

and thus, allow for the design of timely control treatments (L Chaerle, Caeneghem, & 

Messens, 1999; Idso, Jackson, Pinter Jr, Reginato, & Hatfield, 1981). Various studies show 

that the temperature information captured in thermal images of plants may be affected by 

several factors such as the amount of incident sunlight, the leaf angles and the distance 

between the thermal camera and the plant, (Ju, Nebel, & Siebert, 2004; Stoll & Jones, 

2007). Information about the effect of these factors can be obtained by using a stereo visual 

and thermal imaging setup (Scharstein & Szeliski, 2002; Song, Wilson, Edmondson, & 

Parsons, 2007). Therefore, early disease detection accuracy may be increased by 

performing a joint analysis of temperature data from thermal images and imaging data from 

visible light images (Cohen, Alchanatis, Prigojin, Levi, & Soroker, 2011; Leinonen & Jones, 

2004). We aim to combine information of stereo visible light images with thermal images to 

overcome these problems and present a method for automatic detection of disease in 

plants using machine learning techniques. This report presents experiments and results 

performed during the last year on joint analysis of thermal and stereo images of diseased 

tomato plants. 

Thermal imaging has good potential for early detection of plant disease, especially when the 

disease directly affects transpiration rate. Early detection of disease is very important as 

prompt intervention (e.g. through the application of fungicides or other control measures) 

can control subsequent spread of disease which would result in reduced the quantity and 

quality of crop yield (Erich-Christian Oerke, Gerhards, & Menz, 2010). Naidu et al. (Naidu, 

Perry, Pierce, & Mekuria, 2009) used discriminant analysis to identify virus infected 

grapevine (grapevine leafroll disease) using leaf reflectance spectra. The authors found 

specific differences in wavelength intervals in the green, near infrared and mid-infrared 

region and obtained a maximum accuracy of 81% in classification results. Chaerle et al. (L 

Chaerle et al., 1999) studied tobacco infected with tobacco mosaic virus (TMV) and found 

that sites of infection were 0.3-0.4°C warmer than the surrounding tissue hours before the 

initial appearance of the necrotic lesions. They also observed a correlation between leaf 

temperature and transpiration by thermography and steady-state porometry. In (Laury 

Chaerle, Leinonen, Jones, & Van Der Straeten, 2007), Chaerle et al. studied the use of 

thermal and chlorophyll fluorescence imaging in pre-symptomatic responses for diagnosis 

of different diseases and to predict plant growth. The authors concluded that conventional 
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methods are time consuming and suitable for small number of plants, whereas imaging 

techniques can be used to screen large number of plants for biotic and abiotic stress and to 

predict the crop growth.  

Oerke et al. (E-C Oerke, Steiner, Dehne, & Lindenthal, 2006) studied the changes in 

metabolic processes and transpiration rate within cucumber leaves following infection by 

Pseudoperonospora cubensis (downy mildew) and showed that healthy and infected leaves 

can be discriminated even before symptoms appeared. The maximum temperature 

difference (MTD) was found to be related to the severity of infection and could be used for 

the discrimination of healthy leaves or those with downy mildew (Lindenthal, Steiner, 

Dehne, & Oerke, 2005). In another study, Oerke et al. (E.-C. Oerke, Fröhling, & Steiner, 

2011) investigated the effect of the fungus Venturia inaequalis on apple leaves and found 

MTD to be strongly correlated with the size of infection sites. Stoll et al. (Stoll, Schultz, & 

Berkelmann-Loehnertz, 2008) investigated the use of infrared thermography to study the 

attack of Plasmopara viticola in grape vine leaves under varying water status conditions 

while research on wheat canopies for detection of fungal diseases revealed that higher 

temperature was observed for ears (containing the grain) infected with Fusarium (Lenthe, 

Oerke, & Dehne, 2007; E-C Oerke & Steiner, 2010). 

Thermal and visible light images are usually captured using different type of sensors from 

different viewpoints and with different resolutions. As a pre-processing step before joint 

analysis, thermal and visible light images of plants must be aligned so that the pixel 

locations in both images correspond to the same physical locations in the plant. To the best 

of our knowledge, there is no existing literature on automatic registration of thermal and 

visible light images of diseased plants. However, in the past researchers have manually 

registered thermal and colour images for multi-modal image analysis of plants (Leinonen & 

Jones, 2004). Automatic registration of thermal and visible images of diseased plants is a 

challenging task due to the fact that there is a mismatch in texture information and edge 

information is often missing in the corresponding visible/thermal image. The reason for this 

information mismatch is that the thermal profile of a leaf in a diseased plant can show 

symptoms of disease before they visibly appear. In other words, a leaf with a smooth green 

profile (colour) in the visible light image may have a textured profile in the thermal image 

with a temperature higher or lower compared to that of the surrounding environment 

because of the changes in the plant which visibly appear at a later stage.  

Infrared thermal imaging has been previously employed in video surveillance e.g., traffic, 

airport security, detection of concealed weapons, smoke detection and patient monitoring 

(H. M. Chen, Lee, Rao, Slamani, & Varshney, 2005; Ju Han & Bhanu, 2007; Ju et al., 2004; 
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Verstockt et al., 2011). One approach for registration is to calibrate the stereo visual + 

thermal imaging camera setup and use transformations to align the resulting images 

(Krotosky & Trivedi, 2007; Torabi & Bilodeau, 2013; Zhao & Cheung, 2012). One 

disadvantage of this approach is that the calibration parameters of the cameras may not be 

readily available. In such cases, a possible solution is to align the thermal and visible light 

images using exclusively image based information. Various researchers have proposed 

methods that use line, edge and gradient information to register thermal and visible images 

of scenes with strong edge and gradient information (Jungong Han, Pauwels, & de Zeeuw, 

2013; Jungong Han, Pauwels, & Zeeuw, 2012; Kim, Lee, & Ra, 2008; J. H. Lee, Kim, Lee, 

Kang, & Ra, 2010). In general, line, edge and corner based methods are reliable for images 

of man-made environments, however they perform poorly on images of natural objects. Jarc 

et al. (Jarc, Perš, Rogelj, Perše, & Kovacic, 2007) proposed a registration method based on 

texture features; however, the method is not automatic and requires manual selection of 

features. Other methods based on mutual information and cross correlation of image 

patches rely on texture similarities between the two kinds of images (Bilodeau, St-Onge, & 

Garnier, 2011; J. H. Lee et al., 2010; Torabi & Bilodeau, 2013). Since there is a high 

probability that texture information may be missing in the corresponding visible/thermal 

image(s) of diseased plants, methods based on mutual information and cross-correlation 

may not be a good choice for registration. 

Region-based methods, such as those based on silhouette extraction, usually provide more 

reliable correspondence between visible and thermal images than feature based methods 

(Bilodeau et al., 2011; H. Chen & Varshney, 2001; Verstockt et al., 2011). Bilodeau et al. 

(Bilodeau et al., 2011) proposed registering  thermal and visible images of people by 

extracting features from human silhouettes. Torabi et al. (Torabi, Massé, & Bilodeau, 2012) 

suggested a RANSAC trajectory-to-trajectory matching based registration method that 

maximizes human silhouette overlap in video sequences. Han et al. (Ju Han & Bhanu, 

2007) proposed a hierarchical genetic algorithm (HGA) for silhouette extraction using an 

automatic registration method for human movement detection. The authors improve the 

accuracy of the extracted human silhouette by combining silhouette and thermal/colour 

information from coarsely registered thermal and visible images. Human body temperature 

is generally higher than that of the background region and this characteristic has been used 

by researchers in (H. Chen & Varshney, 2001; Verstockt et al., 2011) to extract human 

silhouettes. However, in the case of thermal images of diseased plants, the temperature 

profile does not exhibit this characteristic. It is possible that within the same plant the 

temperature of different regions is higher or lower than that of the background. Another 

common method for silhouette extraction in video sequences is background subtraction. 
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This method usually provides very good results because of the high frame rate of the 

sequences and the fact that the background between two consecutive frames is usually 

very similar. For the case of images of diseased plants, background subtraction is not 

efficient due to the limited number of consecutive still images and the fact that there may be 

a large interval between two consecutive still images.  

In this report, we propose an algorithm for registration of thermal and visible light images of 

diseased plants based on silhouette registration. The algorithm features a novel multi-scale 

method for silhouette extraction of plants in thermal images. An overview of the proposed 

algorithm is shown in Figure 1. For the visible light image, the algorithm uses the strength of 

edges/gradient to detect and extract the silhouette whereas for the thermal image it uses a 

method based on the stationary wavelet transform (SWT). The latter follows a multi-scale 

approach that first estimates the silhouette at coarse scales by using the curvature strength 

as computed from the Hessian matrix of coefficients at each pixel location. It then uses 

these estimates to refine the silhouette at finer scales. After silhouette extraction, the 

algorithm employs a rigid + non-rigid registration method based on the non-rigid method 

proposed by Rueckert et al. (Rueckert et al., 1999) to register the thermal and visible light 

images. 

 

 

Figure 1: Overview of the proposed algorithm. 

In addition to colour and temperature information, we add depth information to our analysis 

in this study. Application of stereo vision in horticulture is not new and has been used for 

plant quality assessment and phenotyping previously.  Ivanov et al. (Ivanov, Boissard, 

Chapron, & Andrieu, 1995) presented a feature based matching approach for disparity 

estimation in stereo images of plants but it was not fully automatic. Andersen et al. 

(Andersen, Reng, & Kirk, 2005) and Biskup et al. (Biskup, Scharr, Schurr, & Rascher, 2007) 

used area correlation combined with simulated annealing to estimate depth. Song et al. 

(Song et al., 2007) presented a multi-resolution pyramid which uses Kalman filtering to 

update disparity results from one level to the next level. To increase the accuracy of 3D 
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depth estimation, stereo vision has been combined by various researchers with Light 

Detection and Ranging (LIDAR) technology (Omasa, Hosoi, & Konishi, 2007; Rosell & 

Sanz, 2012). Here, we use a stereo visible imaging setup for depth estimation to avoid any 

extra costs and computational burden being added to the setup by the addition of another 

imaging system.  

It is widely known that the thermal profile or the time interval between onset and visible 

appearance of disease varies depending on the type of disease and the plant. This work is 

a step towards making automatic detection of disease possible regardless of disease or 

plant type. We present here a novel approach for automatic detection of diseased plants by 

including depth information to thermal and visible light image data. We study the effect of a 

fungus Oidium neolycopersici which causes powdery mildew in tomato plants and 

investigate the effect of combining stereo visible imaging with thermal imaging on our ability 

to detect the disease before appearance of visible symptoms. For depth estimation, we 

compare six different disparity estimation algorithms and propose a method to estimate 

smooth and accurate disparity maps with efficient computational cost. We propose two 

different approaches to extract a novel feature set and show that it is capable of identifying 

plants poised to be affected by the fungus during the experiment. 

Materials and methods 

Image Acquisition 

An experimental setup was designed and developed at the Department of Computer 

Science, University of Warwick, UK, to simultaneously acquire visual and thermal images of 

diseased/healthy plants. The imaging setup consisted of two visible light imaging cameras 

(Canon Powershot S100), and a thermal imaging camera (Cedip Titanium). The experiment 

was carried out on 71 tomato plants (cultivar Espero) in a controlled environment at 20˚C 

with thermal and stereo visible light images being collected for 14 consecutive days (day 0 

to day13). Of these 71 plants, 54 plants were artificially inoculated on day 0 with the fungus 

Oidium neolycopersici which causes powdery mildew disease, whereas the remaining 17 

plants were not inoculated. Inoculation was carried out by spraying the tomato plants to run 

off with a spore suspension of O. neolycopersici at a concentration of 1 x 105 spores ml-1. 

The disease symptoms that developed consisted of white powdery spots (first appearing 

after approx. 7 days) that expanded over time and eventually caused chlorosis and leaf die-

back (Figure 2). 
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Figure 2: The appearance of disease symptoms with time on leaves of a diseased plant. 

Silhouette Extraction 

Thermal Image 

Extraction of plant silhouettes from thermal images obtained in our experiments is a difficult 

step because of high noise content. Since thermal images were obtained from diseased 

plants inoculated with powdery mildew, the intensity of the thermal profile changes within 

leaves. Figure 3 (c) shows a thermal image of a diseased plant enhanced by truncating the 

lower and upper 1% of pixel values and by contrast stretching where the thermal profile 

(i.e., intensity) of the background is very close to that of the leaves. Furthermore, the 

thermal profile of some of the leaves is higher/lower than that of the background. Because 

of the presence of weak edges in the thermal image of the diseased plant, edge detection 

Day 5 Day 6 Day 7 

Day 8 Day 9 Day 10 

Day 11 Day 12 Day 13 
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methods such as gradient, Canny edge detector, difference of Gaussian, Laplacian perform 

poorly on thermal images. Based on this observation, we propose an approach that is 

minimally affected by intensity changes within leaf.  

It has been shown that the joint statistics of coefficients obtained after wavelet 

transformation (WT) show strong correlation among object boundaries in thermal and visible 

light images (Morris, Avidan, Matusik, & Pfister, 2007). Thermal images, therefore, capture 

most of the object boundaries and thus WT can be used to extract silhouettes. Additionally, 

WT has shown to be very efficient in reducing noise, improving mutli-scale analysis and 

detecting edge direction information (Kong et al., 2006; Nashat, Abdullah, & Abdullah, 2011; 

Olivo-Marin, 2002). Multi-scale wavelet-based methods have also shown to be efficient in 

fusing thermal and visible light images (S. Chen, Su, Zhang, & Tian, 2008; Pajares & 

Manuel de la Cruz, 2004). In this work, we present a multi-scale wavelet-based method to 

extract plant silhouettes in thermal images. We use the stationary wavelet transform (SWT), 

which is similar to the discrete wavelet transform (DWT) except that it does not use down 

sampling. As a result, the resulting frequency sub-bands generated have the same size as 

the input image and contain coefficients that are redundant and correlated across different 

scales (Nason & Silverman, 1995). Our multi-scale SWT-based method uses the Haar filter 

to first decompose the thermal image into a number of sub-bands. 

For an image of m×n pixels, it computes a matrix        equivalent to the matrix of second 

derivatives (Hessian) at each pixel location (Morse, 2000; Nashat et al., 2011):  

 , ,

| | | |

| | | |

ijs ijs

i j s
ijs ijs

V D

D H

 
  
  

  (1) 

 

Figure 3: (a) Example visible light image; (b) silhouette extracted from visible light image (Vg) 

using the gradient-based method; (c) corresponding thermal image (enhanced by truncating 

the upper and lower 1% pixel values and by contrast stretching); and (d) silhouette extracted 

from thermal image (Tw) using the SWT-based method. 

where                are the horizontal, vertical and diagonal coefficients, respectively, at 

scale s and pixel location (   ); scale     corresponds to the first level of decomposition. 

(a) (b) (c) (d) 
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Matrix        is then decomposed using Singular Value Decomposition (SVD). The largest 

singular value provides information about the direction of the highest curvature at pixel (   ), 

also known as the curvature strength at pixel (   ) (Morse, 2000). We use the singular 

values of each Hessian matrix        to compute the m×n edge map   , of the image at scale 

  as follows:  

 
( , ) max( (1), (2))s ijs ijsE i j  

 (2) 

where         and         are the two singular values of        at pixel location (   ) and scale 

 . 

 

Figure 4: (a) Original thermal image, and (b)-(f) edge maps E1-E5. All images are enhanced by 

computing logarithm of the intensities. Artifacts due to symmetric reflection can be seen but 

do not affect the silhouette. 

The flow chart of the SWT-based method for plant silhouette extraction in thermal images is 

shown in Figure 5. In this work, the method begins at scale    , since it was found 

empirically that this scale provides the best trade-off between accuracy and computational 

complexity. Similarly, the method stops at scale     as this scale was empirically found to 

be a good trade-off between the amount of weak and blurred edges, which may affect the 

accuracy of the extracted silhouette (see Figure 4). We apply morphological operations on 

the binary image    to remove small objects. The last step is to discard the extra r rows 

(b) (c) 

(d) (e) (f) 

(a) 
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from the top and the c columns from the left of the resulting binary image to obtain an m×n 

binary silhouette of the plant, denoted by   . Figure 3 (d) shows a sample binary image 

depicting the plant silhouette in the thermal image in Figure 3 (c) using the proposed SWT-

based method. 

 

Figure 5: Flow chart of the SWT-based method for silhouette extraction in thermal images. 

Visible Light Image 

During the progress of the powdery mildew disease, some parts of the leaves change 

colour from green to yellow and then to white. It is therefore necessary to design a method 

that is robust to colour changes in leaves and that is capable of extracting plant silhouettes 

accurately from visible light images. To this end, we propose a gradient based-method that 

first converts the image from the RGB colour space to the Lab colour space in order to 

enhance the plant region by subtracting the ‘a’ from the ‘b’ channel. After colour space 

conversion, the method removes non-uniform illumination artifacts by subtracting the local 

mean (Kale, 2008). It then removes noise by using anisotropic diffusion filtering, which 

helps to smooth the background noise while keeping the edges/boundary of the plant region 

sharp (Perona & Malik, 1990). The method then detects edges by computing the gradient of 

the image using the Sobel operator. In order to enhance regions around high gradient 

values (plant boundary) and suppress low gradient values, the method performs a 

grayscale closing operation on the detected edges. The resulting image is thresholded to 

obtain a binary image containing the silhouette. Morphological operations are then 

performed on the binary image to obtain the final plant silhouette denoted by   . Figure 3 (a) 

shows a sample visible light image of a diseased plant and Figure 3 (b) shows the 

corresponding plant silhouette as computed using our proposed gradient-based method. 
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Note that the main motivation to use this method in visible light images, as opposed to the 

SWT-based method, is the low computationally complexity and good results. We further 

discuss this in results and discussions section. 

Registration 

The goal of registration is to align the thermal and visible light images in such a way that the 

same pixel locations in both the images correspond to same physical location in the plant. 

Our particular registration method is a two-step process: rigid and non-rigid registration. In 

rigid registration, a similarity transformation is parameterised by four degrees of freedom. A 

general similarity transformation matrix for a 2D image can be written as: 

 
2 1

2 1

cos sin
.

sin cos

x

y

tx x
S

ty y

 

 

      
       

      
  (3) 

where S is the scale factor,   is the angle of rotation along the z-axis, and xt  and yt  are 

the shifts in the x and y directions, respectively. The transformation in Eq. (5) maps a point 

1 1( , )x y  in a floating image to a corresponding point 2 2( , )x y  in a static image. In our case, 

the binary image depicting the plant silhouette from the visible light image is the floating 

image and the binary image depicting the plant silhouette from the thermal image is the 

static image. The rigid registration step first finds the centroid of the plant silhouette in both 

the thermal and visible images. It then calculates the difference between centroid locations 

and shifts the floating image by a number of pixels equal to this difference. It uses the sum 

of absolute differences as a cost function and an optimized pattern search algorithm (Audet 

& Dennis, 2002) to search for the best approximation of similarity transformation between 

the two plant silhouettes. The search space range is chosen to be [0.9, 1.1] for scale factor 

S, [-0.1˚, 0.1˚] for angle α, and [-100, 100] pixels for translations ( ,x yt t ). The resulting 

registered visible image silhouette obtained after applying similarity transformation is 

denoted by 
'

gV .  

After rigid registration, the second step performs non-rigid registration using a free-form 

deformation (FFD) model based on multilevel cubic B-Spline approximation proposed by 

Rueckert et al. (Kroon, 2011; S. Lee, Wolberg, & Shin, 1997; Rueckert et al., 1999). FFD 

models deform an object by manipulating an underlying mesh of control points . For an 

image of m×n pixels, let {( , ) | 0 ,0 }x y x m y n      be the image domain on the xy-

plane, and ij  be the value of the ij-th control point on lattice   represented by a x yn n  

mesh with uniform spacing  .  The FFD approximation function can then be written as 
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T   (4) 

where / 1xi x n    , / 1yj y n    , / /x xt x n x n    , / /y yu y n y n      and kB  and 

lB  represent cubic B-spline basis functions. This second step uses the hierarchical multi-

level B-spline approximation proposed in (S. Lee et al., 1997) and an implementation of the 

limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) by Dirk-Jan Kroon  

as the optimization function (Kroon, 2011). The similarity measure used here is the Sum of 

Squared Differences (SSD):  

 ' ' 2

,

( , ( )) ( ( , ) ( ( , )))similarity w g w g

x y

C T V T x y V x y 


    (5) 

where 
'( )gV  is the plant silhouette from the visible light image after applying transformation 

( , )x yT  to 
'

gV ; wT  and '

gV  are the silhouette of the thermal image and registered visible light 

image, respectively, as obtained by the rigid registration step. 

Depth Estimation 

To add depth information to the set of features which can be collected from registered 

thermal and visible light images, we use disparity between the stereo image pair. For a 

stereo vision setup depth (Z) can be related to disparity (d) by /d fB Z , where f is focal 

length of the lens of the camera and B is the baseline which can be defined as the distance 

between the centres of left and right camera lens. In this work, we propose a disparity 

estimation algorithm for estimation of smooth and accurate disparity maps and compare the 

results with five state of the art existing methods. We selected these five algorithms for our 

study based on three criteria 1) they represent major disparity estimation schemes, 2) these 

methods have been used in the past for comparison studies (Scharstein & Szeliski, 2002), 

and 3) they produce acceptable results on the plant images. The goal is to present a 

method which produces accurate and smooth disparity map, and is less sensitive to the 

background noise and colour variation in the diseased plants. 

The first two methods in our list are based on block based matching. The first method based 

on block based stereo matching (BSM) was proposed in (Konolige, 1998). BSM takes 

Laplacian of Gaussian (LoG) transform of the stereo images and then uses absolute 

differences to find the matching blocks. A Multi-Resolution Stereo Matching (MRSM) was 

designed for surface modelling of plants in (Song et al., 2007). The algorithm first divides 

the image into overlapping blocks at each level of a multi-resolution pyramid and then uses 
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a variation of the Birchfield and Tomasi (BT) cost function to match the corresponding 

blocks (Birchfield & Tomasi, 1999).  

Graph-cut based Stereo Matching (GCM) (V. Kolmogorov & Zabih, 2001) is a widely used 

disparity estimation method. This algorithm defines a global energy function and minimises 

the energy function using graph cuts (Boykov & Kolmogorov, 2004; Boykov, Veksler, & 

Zabih, 2001; V. Kolmogorov & Zabih, 2001; Vladimir Kolmogorov & Zabih, 2002). The 

algorithm initially defines a unique disparity α and then iteratively searches for an α which 

minimises the energy function. The fourth method non-local cost aggregation (NCA) (Yang, 

2012) uses the concept of bilateral filter by weighting the pixel intensity differences with 

intensity edges and provides a non-local solution by aggregating the cost on a tree structure 

derived from the stereo image pair. 

Semi-Global Matching (SGM) (Hirschmüller, 2008) simplifies the energy minimisation 

problem by aggregating 1D minimum costs from all directions. The cost         of pixel p at 

disparity d along the direction r can be defined as  

 
1

1 2

( , ) C( , ) min( ( , ), ( , 1) P ,

( , 1) P ,min ( , ) P )

min ( , )

r r r

r r
i

r
k

L p d p d L p r d L p r d

L p r d L p r i

L p r k

     

    

 

   (6) 

The disparity d at pixel p can then be determined by minimising the cost S(p,d) 

 ( , ) ( , )r
r

S p d L p d    (7) 

The proposed multi-resolution semi-global matching (MRSGM) method is based on SGM 

proposed by (Hirschmüller, 2008).  An overview of the proposed approach is shown in 

Figure 6. We first calculate the disparity at three consecutive dyadic resolutions and then 

take the median of the disparity estimated at these three resolutions. For disparity 

estimation, we use SGM with block based BT as the matching cost instead of pixel-wise 

matching. After disparity estimation, we post-process the result to create a smooth and 

accurate disparity map which is robust to the background noise and variation in our data set 

using the colour information as proposed in (Yang, Wang, & Ahuja, 2010).  

The post processing method uses the concept of bilateral filtering to improve the disparity 

map. The underlying assumption is that the colour discontinuity is a strong indicator of 

depth discontinuity. If D denotes the disparity map and I denotes the reference image, then 

for a pixel        , let us assume                                         , 
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              ,                 , where   is the radius of the bilateral filter. We 

can update the disparity map D using the following equation  

 

W( , )C( , , )

( , ) arg min
W( , )

u u v vp p

d d u u v vp p p

u v u v d

D x y
u v

 

  

 
 

 
   (8) 

where  

2 2
1 || ( , ), (u, v) || 1 || ( , ), (u, v) ||

W(u, v) exp .exp
2 2r

I x y I x y

r

                      

, 

C(u,v, ) min( ,| (u,v) |)d D d L , 

where || . ||  is l2-norm, υ is a constant and was chosen to be 0.2 (Yang et al., 2010),   is the 

total number of disparities. The remaining parameters    and r can be used to control the 

smoothness of the updated disparity map. 

 

Figure 6: Overview of the proposed multi-resolution semi-global matching approach. 

Disease Detection in Plants  

In this section, we combine depth, temperature and colour information from thermal 

and stereo visible light images. We present two different approaches for 

classification of diseased plants after adding depth information in the form of 

disparity from the previous section. The transformation(s) estimated by registration 

method was used to align all the three images (thermal, colour and disparity) so that the 

same pixel location in all the three images approximately correspond to the same 

physical point in the plant. After registration, we remove the background to obtain an 

image which contains only plant regions. To remove the background, we train an SVM 

classifier with a linear kernel using the RGB pixel values and classify each pixel into 
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background/plant pixel. The result of extracting the plant region using our method on an 

image is shown in Figure 7 (b).  

 

Figure 7: (a) Colour image registered with thermal image; (b) Colour image obtained after the 

background removal. 

We present two different classification approaches to detect diseased plants. The first 

classification approach can be used to detect diseased plants based on features collected 

from individual pixels. The second classification approach extracts features from the whole 

plant and uses these extracted features to detect diseased plants. 

Pixel Level Classification Approach 

This is a two-step classification approach in which we directly use colour, depth and 

temperature values to first roughly classify the plant into healthy and diseased pixels and 

then we classify whole plant into healthy and diseased plant using the features extracted 

from the potential diseased pixels. For the first step, we convert the colour space of the 

RGB image in Figure 7 (b) to Lab. In Lab colour space L channel corresponds to luminance 

whereas a and b channels contain colour information. Similarly, we change the RGB colour 

space of the colour image to CMYK where C and Y channels correspond to strength of cyan 

and yellow colours in the image. We directly use the pixel values corresponding to a and b 

channels from Lab colour space and C & Y channels from CMYK colour space.  For depth 

and temperature information, we directly use pixel values in disparity map D and thermal 

intensity map T, respectively. Therefore, our classification algorithm uses a six dimensional 

feature vector V consisting of a, b, C, Y, d & T values at each pixel location to classify a 

pixel into healthy or diseased pixel. For this purpose, we train the SVM classifier kernel to 

classify plant pixels in an image into healthy and diseased pixels. The result of classifying 

plant into healthy and diseased pixels for the image in Figure 7 (b) is shown in Figure 8 (a) 

and Figure 8 (b) respectively. 

(a) (b) 
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The healthy plants are expected to provide smooth profile in colour and thermal images 

compared to diseased plants. This prior knowledge leads us to an assumption that the 

healthy plants carry less variation in the aforementioned feature measurements whereas 

the diseased plants carry large variation in the same measurements. If our assumption is 

true, we must be able to detect diseased plants using temperature, colour and depth 

information. In the first step of pixel classification, it is possible that some pixels in healthy 

plants can be erroneously classified as diseased pixels. According to our assumption, if a 

region in a healthy plant is incorrectly classified as diseased, it will have less variation 

whereas a correctly classified diseased region will have high variation. To test our 

hypothesis, we placed all the feature vectors corresponding to the diseased pixels in Figure 

8 (b) in a matrix V and performed the principal component analysis (PCA) on V. We 

computed the standard deviation of data along the first and second principal components as 

σp1 & σp2 respectively. The smaller values of σp1 & σp2 in Figure 9 for healthy plants 

validates our assumption that there is low variation in data for healthy plants compared to 

diseased plants, therefore we can classify the images on the basis of this information. 

 

Figure 8: The result of classifying plant in Figure 7 (b) into (a) healthy and (b) diseased pixels.  

Plant level Classification Approach 

In this classification approach, instead of computing features at each pixel location or a 

specific part of the plant, we directly compute features from the whole plant (Figure 7 (b)). 

The following six features were selected on the basis of p-values computed using analysis 

of variance (ANOVA) for different days after inoculation as shown in Figure 9. 

 

   mean of the C channel. 

   mean of the Y channel. 

(a) (b) 
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standard deviation of the corresponding thermal image after scaling with the a 
channel. 

     
standard deviation of the corresponding thermal image after scaling with the L 
channel. 

   standard deviation of disparity corresponding to the plant region. 

   mean of disparity corresponding to the plant region. 

 

Figure 9: A scatterplot of the standard deviation (σp1 & σp2) of data, corresponding to 

diseased pixels for healthy and diseased plants (Day 13), along the first and second principal 

components respectively. 

Table 1: p-values of the selected feature set for day 5 to day 13 after inoculation computed 

using ANOVA. 

 

                      

Day 5 7.59×10-01 6.73×10-01 4.17×10-06 5.98×10-01 2.06×10-02 1.58×10-07 

Day 6 3.02×10-01 4.61×10-01 1.41×10-06 8.15×10-01 5.33×10-03 8.71×10-08 

Day 7 1.14×10-01 1.86×10-01 9.07×10-06 3.36×10-01 6.85×10-04 2.32×10-07 

Day 8 1.89×10-02 8.53×10-02 2.18×10-05 1.08×10-01 1.30×10-04 5.36×10-06 

Day 9 4.39×10-04 9.40×10-03 3.78×10-05 4.54×10-04 1.14×10-07 5.52×10-05 

Day 10 3.66×10-05 8.54×10-05 1.37×10-05 4.07×10-05 9.71×10-09 4.51×10-03 

Day 11 3.77×10-05 2.66×10-06 1.94×10-07 8.37×10-07 7.49×10-11 6.16×10-03 

Day 12 5.27×10-06 4.09×10-09 3.46×10-06 3.12×10-10 6.52×10-13 1.98×10-01 



 Agriculture and Horticulture Development Board 2014. All rights reserved 

 

17 

Day 13 1.35×10-06 1.23×10-10 5.47×10-05 5.80×10-11 1.48×10-12 2.84×10-01 

The Cyan and Yellow in CMYK carry the green colour, yellow is very important because the 

leaf infected with powdery mildew turns yellow after showing white spots. Therefore, the 

presence of yellow colour can be directly translated to disease. The next two features carry 

temperature information where temperature information is scaled by Luminance and a 

channels. Luminance is important to get information about the light intensity whereas lower 

values of a carry information about the green-ness of the pixel.      and      were also 

found to be very useful features in a previous study aimed at automatic detection of water 

deficient regions in a spinach canopy (Raza et al., 2014). The last two features carry depth 

information (in terms of disparity), the standard deviation of disparity must be higher in the 

diseased plants because of irregular leaves. 

Results and Discussions 

Registration 

In this section, we first show that registration of thermal and visible images of diseased 

plants using silhouette extraction performs better than registration using exclusively 

intensity values (see Figure 10). To this end, we computed the mutual information of a pair 

of registered thermal and visible light images. Mutual information is a similarity metric 

commonly used for registration of multi-modal images (Pluim, Maintz, & Viergever, 2003).  

We first converted the visible light image to grayscale image and then computed the mutual 

information of this grayscale image and the thermal image for various translation values in 

the x and y directions, as shown in Figure 10 (a). Ideally, local minima for the cost function 

(negative of mutual information) occur at a zero shift in both the x and y directions (since the 

images are already registered). However, it can be observed in the plot that minima do not 

occur at       but at        . Mutual information is maximum when the joint entropy of both 

images is minimum, however this might not be the case in thermal and visible images of 

diseased plants as the intensity information from these images may have no direct 

correlation. We then performed the same experiment by using the plant silhouettes from the 

visible and thermal images, as extracted using our method.  Figure 10 (b) shows the plot of 

mutual information using these plant silhouettes. It is obvious from the plot that the global 

minima (negative of mutual information) occur at a zero shift in both the x and y directions.  

To compare the accuracy of our algorithm, we obtained ground truth silhouettes, denoted by 

   , by manually marking the plant region in 30 randomly picked thermal images from our 

dataset consisting of 984 pairs of images. For comparison purposes, plant silhouettes from 
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the thermal images were also obtained by using the same (gradient-based) method as the 

one used for visible light images after log transformation. Since thermal images are 

grayscale, we skipped the first two steps, i.e., conversion to the Lab colour space and 

subtraction of the ‘a’ and ‘b’ channels. In this case, the thermal images were first enhanced 

by using log transformation followed by de-noising using anisotropic diffusion filtering. Table 

2 details a list of notations used to denote plant silhouettes extracted and registered using 

different methods.   
 
 in Table 2 is not discussed as we will show later that silhouettes 

extracted by the gradient-based method (i.e.,   ) in thermal images are not a good 

approximation of plant silhouettes and therefore the registration of    with    is not relevant. 

 

Figure 10: (a) (Negative of) the mutual information using intensity values of images vs. shifts 

in the x and y directions. (b) (Negative of) mutual information using silhouettes of images vs. 

shifts in the x and y directions. 

Table 2: Notations used to denote silhouettes extracted using different methods. 

    Ground truth plant silhouette from thermal image by manual marking. 

    Ground truth plant silhouette from visible light image by manual marking. 

   Plant silhouette from thermal image using the SWT-based method. 

   Plant silhouette from thermal image using the gradient-based method. 

   Plant silhouette from visible light image using the SWT-based method. 

   Plant silhouette from visible light image using the gradient-based method. 

  
     after registration with     using the registration method. 

  
 

    after registration with    using the registration method. 

  
     after registration with     using the registration method. 

  
 

    after registration with    using the registration method. 

Figure 11 shows four pairs of thermal and visible images of plants at different stage of 

powdery mildew disease. The boundary of     and     obtained by manually marking four pair 

pair of images is shown in pink. Figure 12 shows the overlap between the ground truth     

(a) (b) 
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and [  ,  ] for the four pairs of images in Figure 11. The amount of overlap is represented in 

yellow,     is represented in green and [  ,  ] are represented in red. The results show that 

the percentage of overlap (yellow) is higher in the pair (   ,   ) than it is in the pair (   ,   ) ( 

 

 

 

 

 

 

 

Table 3 ). It is important to note that although    is very similar to    , there are still some 

non-overlapping regions (red) in (   ,   ) (marked by ‘η’ in Figure 12). These non-

overlapping regions occur when the leaf surfaces are clumped together and thus, the fine 

details are not captured by our SWT-based method. Let us recall that in our method there is 

a trade-off between the accuracy of the binary image and the amount of noise at scale   

 , compared to scale  .  At high scales, binary images with more blurred boundaries (i.e,   ) 

are usually generated whereas at lower scales, binary images with less blurred boundaries 

are usually generated at the expense of high noise content.  

Some of the leaves in thermal Image P1 in Figure 11 show both higher and lower 

temperatures than that of the background. In this case, the gradient-based method failed to 

extract the plant silhouette from P1 as it missed most of the leaves. Our SWT-based 

method was unable to extract fine stem details near the plant boundary in P1 where the leaf 

temperature is very close to that of the background; however the overall result (overlap) of 

our method was better than that achieved by the gradient-based method. 
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Figure 11: Top row: sample visible light images; bottom row: corresponding thermal images. 

Pink colour represents hand-marked ground truth silhouettes. 

We quantified  the accuracy of our silhouette extraction method by using the coverage 

metric   (Verstockt et al., 2011): 
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( , )
I I

I I
I I


 


 (9) 

where    and    are any two binary images depicting silhouettes. In addition, we also 

computed the Sørensen–Dice index ( ) as another metric to quantify the results: 
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Table 3 reports the values of   and   for the four pairs of images shown in Figure 11. These 

results show a higher percentage of overlap between the ground truth silhouette (   ) and 

P2 P3 P1 P4 
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the silhouette extracted by the SWT-based based method (  ), than that between     and 

the silhouette extracted by the gradient-based method (  ). 

 

Figure 12: Amount of silhouette overlap for the four pairs of sample images in Figure 11. First 

row: overlap (yellow) between the manually extracted ground truth plant silhouette     from 

thermal image (in green) and     (in red). Second row: overlap (yellow) between      (in green) 

and     (in red). Region marked as ‘η’ shows non-overlapping pixels where the SWT- based 

method was unable to capture fine details due to clumped leaves at the plant boundary. 

 

 

 

 

 

 

 

 

Table 3: Values for the coverage metric   and the Dice index   for four sample pairs of 

images in Figure 11. 

 
Silhouette 

Pairs 
P1 P2 P3 P4 

  

(   ,     0.7221 0.5328 0.6840 0.8302 

(   ,   ) 0.7884 0.8048 0.8141 0.8718 

(   ,   
   0.7733 0.7535 0.7867 0.8162 

(   ,   
 ) 0.8176 0.8054 0.8067 0.8632 
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(  ,   
 ) 0.8459 0.89 0.8911 0.8372 

  

(   ,     0.8386 0.6952 0.8123 0.9072 

(   ,   ) 0.8817 0.8919 0.8975 0.9315 

(   ,   
   0.8722 0.8594 0.8806 0.8988 

(   ,   
 ) 0.8997 0.8922 0.8930 0.9266 

(  ,   
 ) 0.9165 0.9418 0.9424 0.9114 

Figure 13 shows registration results obtained after registration. The top row shows the 

amount of overlap between the silhouettes    and   
  while the bottom row shows the 

thermal image overlaid on top of the registered visible light image. For the case of P1 and 

P4, the stem of the plant features a higher temperature than that of the background and as 

a consequence, the stem appears red in colour in the thermal image, which exactly 

coincides with the stem region in the visible light image. Leaves that are located far from the 

centre of the plant in P1 also feature a higher temperature than that of the background and 

appear in yellow colour. These leaves, when overlaid, also coincide with the leaves in the 

visible light image. Blue-purple regions in P2, P3 and P4 show leaf regions in thermal 

images that coincide with the corresponding leaf regions in the visible light images when 

overlaid.  

Figure 14 shows a cropped and enhanced section of P3 delimited by a white box in the 

silhouette overlap and by a black box in the thermal/visible overlay in Figure 13. The visible 

light image and the corresponding thermal image are shown in Figure 14 (a) & (b) 

respectively. The visible light image shows the leaf in red with a shade of pink. Because of 

this peculiar colour of the leaf, the extracted silhouette from the visible light image is not 

accurate and results in a disconnected region depicted in Figure 14 (c) in yellow and green 

colour. This inaccuracy causes a local mis-registration of the leaf region as depicted in 

Figure 14 (d), where the purple shade represents the leaf region and the yellow shade 

represents the non-leaf region in the thermal image. Note that the leaf region in the thermal 

image does not overlap the leaf region in the visible light image accurately. These local mis-

registrations can occur if there are prominent inaccuracies in the extracted silhouettes.  
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Figure 13: Registration results based on silhouettes. Top row: overlap (yellow) between the 

silhouettes of thermal (red) and registered visible (green) light images. Bottom row: thermal 

images overlaid on top of registered visible light images. Stem and leaf regions in thermal 

image coincide with stem and leaf regions in the visible light image. The ‘mis-registration’ 

represented by the white box in the P3 silhouette overlap and by the black box in the 

thermal/visible image overlap is explained in Figure 14. 

 

Figure 14: Unregistered part of P3 marked with a box in Figure 13. Visible light image (a) with 

corresponding thermal image and (b) with a leaf in red-pink colour; (c) Local mis-registration 

of silhouettes shown in green and red colour; (d) Local mis-registration of visible and thermal 

images where purple shade represents the leaf region and yellow colour represents the non-

leaf region in the thermal image. 

The mean values of        
 )

 
and        

 ) were calculated to be 0.8815 and 0.9364 with 

standard deviation of 0.0446 and 0.0260, respectively. Table 4 tabulates   and   values for 

30 pairs of images randomly picked to mark the ground truth. The tabulated   and   values 

are higher for the pair (   ,  ) than those for the pair (   ,   ). Similarly,   and   values are 

higher for the pair (   ,   
 ) than those for the pair (   ,   

 
), which shows that when the 

visible image silhouettes are registered with   , the overlap region is larger than that 

obtained when registered with   ,. Figure 15 shows the histogram of        
 )

 
and 

       
 ) for all pairs of images, which shows that most of the images have more than 90% 

overlap. 

P2 P3 P1 P4 

(b) (c) (a) (d) 



 Agriculture and Horticulture Development Board 2014. All rights reserved 

 

24 

All results were obtained using MATLAB 2012a on an Intel 3.20GHz core-i5 PC with 16 GB 

of RAM running a Linux system. The proposed algorithm takes approximately 12.77 sec on 

average to register a pair of thermal and visible images. We also tested our SWT-based 

method to extract silhouette from visible light images. For this case, the subtraction of the ‘a’ 

channel from the ‘b’ channel was performed after converting the visible light image into the 

Lab colour space. We also used a multi-scale approach by first finding a coarse boundary at 

scale s=3 and then refining it at scale s=2. The resulted silhouette    was then registered 

with    to obtain   
 . Note that in this case, the SWT-based method is generally 

computationally expensive as it takes over 15 sec, on average, to register a single pair of 

images. 

Table 4 tabulates        
 )

 
and        

 ) values for 30 pairs of images for which the 

ground truth was obtained. Table 5 tabulates p-values using the Wilcoxon signed-rank test 

for the null hypothesis H0, median(D1-D2)=0, and the alternate hypothesis H1, median(D1-

D2)>0. D1 and D2 represent the coverage metric and Sørensen–Dice index, respectively, 

for the ground truth silhouette     with silhouettes   ,   ,   
 
,  

 and    
 . The significance 

level of the test is 0.01; p-values less than 0.01 indicate that the SWT-based method 

performs significantly better than the gradient-based method to extract a silhouette.  

Figure 16 shows the overlap between the ground truth silhouette manually extracted from 

the visible light image     and   ,   . Note that the silhouette extracted using the SWT-

based method shows the fine details of the boundary, which are relatively more visible in 

the P2 overlap. However, no major improvements in the registration results were achieved 

by extracting the silhouette using the SWT-based method. Given the additional 

computational cost of the SWT-based method, the gradient-based method is recommended 

to extract silhouette from visible light images for registration purpose. 

 
Figure 15: Histograms of         

 )
 
 (left) and        

 )  (right) for all 984 pairs of images. 
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Table 4: Mean and standard deviation of        
 )

 
and        

 ) for 30 randomly picked pairs 

of images and mean and standard deviation of        
 )

 
and        

 )  for all 984 pairs of 

images in our dataset are shown in bold. 

Image 
Pair 

No. of 
Sample Pairs 

Γ Ψ 

µ σ µ σ 

         30 0.7273 0.0943 0.8385 0.0684 

         30 0.8531 0.0385 0.9203 0.0226 

       
 
  30 0.7464 0.0823 0.8522 0.0569 

       
   30 0.8101 0.0460 0.8944 0.0285 

       
   30 0.8468 0.0420 0.9165 0.0250 

      
   30 0.8754 0.0362 0.9332 0.0209 

      
   984 0.8815 0.0446 0.9364 0.0260 

      
   30 0.8952 0.0456 0.9441 0.0259 

      
   984 0.9089 0.0539 0.9514 0.0312 

 

 
Figure 16: Top row: overlap (yellow) between the ground truth silhouette extracted from 

visible light image VGT (green) and the silhouette extracted from visible light image using the 

gradient-based method Vg (red). Bottom row: overlap (yellow) between VGT (green) and the 

silhouette extracted from the visible light image using the SWT-based method Vw (red). 

Table 5: p-values using Wilcoxon signed-rank test to test the null hypothesis H0:median(D1-

D2)=0, and the alternate hypothesis is H1:median(D1-D2)>0. The significance level of the test 

is 0.01. 

D1 D2 p-value 

                     1.0063×10
-6 

                        1.0063×10
-6
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  9.4802×10

-4
 

        
            

 
  9.4802×10

-4
 

        
            

   6.1686×10
-7

 

        
            

   6.1686×10
-7

 

        
            

 
  6.1686×10

-7
 

        
            

 
  6.1686×10

-7
 

Depth Estimation 

All the algorithms and results presented in this section were generated using a machine 

running Windows 7 on an Intel Core i3-2120 (3.3 GHz) CPU with 3GB RAM (665 MHz). The 

code for MRSM (provided by the author) was implemented in MATLAB 2013a, whereas the 

C/C++ implementation of GCM and NCA were downloaded from the author’s websites. We 

used OpenCV library to implement SGM in C++ for our experiments. The BSM and 

MRSGM were partially implemented in C++ and partially in MATLAB 2013a, where the post 

processing algorithm in MRSGM uses C++ implementation by (Yang et al., 2010).  

For BSM, we chose 11×11 block size and for MRSM, we used 16×16 with 2 pyramid levels 

for our experiments. For GCM, NCA and SGM, we chose default parameters provided by 

the authors. Finally, we chose 5×5 block-based BT as cost function and r=3,       for 

MRSGM. All the parameters specified above other than the default parameters were 

chosen on the basis of their good results on stereo images of diseased plants. 

To validate our algorithm we have compared the results of the proposed MRSGM with the 

remaining five algorithms in the appendix A. We have shown that our algorithm not only 

produces decent results on standard test datasets but is also computationally efficient 

compared to other algorithms. Figure 17 compares results of all the six algorithms on our 

dataset. It shows that MRSM performed poorly on the plant images and was found to be 

very sensitive to the background noisy pattern in the image. From the results on test images 

from Middlebury dataset (Appendix A), we know that GCM and NCA produce accurate 

disparity maps but in the case of plant images these two algorithms were found to be highly 

sensitive to the noise content in the image. GCM is slow and produces artifacts along the 

scan lines on the plant images. NCA produces false disparity maps in the region which 

belong to the background. The NCA algorithm divides the image into regions and assumes 

a constant disparity throughout this region. This introduces artifacts which can be observed 

in NCA result. BSM and SGM results were found to be less sensitive to background noise 

but the disparity map produced by the algorithms were not smooth and showed small 

peaks/patches around some pixels which were inconsistent with the neighbouring disparity. 

When compared to all the other algorithms, MRSGM not only produced smooth disparity 



 Agriculture and Horticulture Development Board 2014. All rights reserved 

 

27 

maps but was also found to be less sensitive to the noise content. Although GCM and NCA 

performed well on the test datasets, our plant images with relatively more background noise 

than the Middlebury images proved to be quite challenging for these algorithms. In addition, 

GCM and NCA were calculated to be very slow compared to the proposed MRSGM which 

was found to be not only less sensitive to the noisy pattern but also produced smooth and 

accurate disparity maps. 

Classification Results 

In the following sections, we present results of classification of diseased plants using pixel 

level and plant level classification approaches. 

Pixel level Classification 

From the total of 71 plants, 54 plants were diseased and 17 plants were healthy (not 

inoculated with the fungus). To test the strength of our features, we used SVM classifier. 

We ran 200 cross-validation trials and tested the classifier using random pairs of training 

and testing data. In each trial, we randomly picked 17 out of 54 diseased plants for 

classification purpose. Once the number of diseased and healthy plants was equal, we 

randomly picked 7 out of 17 healthy and diseased plants each for training purpose and the 

remaining 10 for testing the classifier. The classification results of the proposed classifier for 

200 trials in terms of average accuracy, sensitivity, specificity and positive predictive value 

(PPV) are shown in Figure 18. The disease starts to appear 7 days after inoculation and, 

therefore, we concentrate on classification results for day 5 to 13 after inoculation. Figure 18 

indicates that we can achieve an average accuracy of more than 75%, 9 days after 

inoculation. The highest average accuracy achieved in this case is on day 13 i.e., 92.20%, 

which is very significant. However, as the disease starts to appear 7 days after inoculation 

detecting the disease after day 9 is not very beneficial at the commercial level as it might 

spread across the crop. In the next section, we show that we can improve the accuracy of 

detection of diseased plants using the features collected at plant level. 
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Figure 17: Disparity estimation results of algorithms in section 0 on the stereo plant image. 

The colour bar on the right shows disparity values in pixels. 

Plant level Based Classification 

We use the same classifier and the evaluation procedure as in section 0, i.e., we use SVM 

and use 7 images from each group for training and 10 images for testing for 200 cross-

validation trials. For the purpose of comparative analysis, we divide our analysis to colour 

only (  ,   ), colour + thermal (  ,   ,     ,     ), colour + depth (  ,   ,   ,   ), and colour 

+ thermal + depth (  ,   ,     ,     ,   ,   ) features to test how these different sets of 

features compare in terms of their ability to differentiate between healthy and diseased 

plants. From Figure 19, we can see that if we use only colour information we achieve 

accuracy of over 70% only after day 10 of inoculation. We can increase this accuracy by 

combining colour information with thermal or depth, over 70% accuracy after day 9, which is 

an improvement but again is not very beneficial to use at commercial scale. Combining the 

features from colour, thermal and disparity images increase the accuracy of our classifier to 

more than 70% on day 5. Average accuracy of colour + thermal + depth feature set using 

plant level classification in Figure 19 clearly outperform results in Figure 18 of pixel level 

classification approach. However, we can combine the features in this section with σp1 & σp2 

to make a more robust classifier. The average accuracy results using the combined feature 

set are shown in Figure 20. Although average accuracy results of classifier are slightly less 

MRSM BSM GCM 

NCA SGM MRSGM 
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on day5, day6, day8 and day13, the combined feature set produces more stable results as 

shown in Table 6. The standard deviation of classifier accuracy using combined feature set 

is lower than the other two approaches. Figure 21 shows the results of average accuracy, 

sensitivity, specificity and PPV for 200 iterations using the combined feature set. 

Table 6: Average and Standard deviation of accuracy results for 200 cross-validation trials for 

feature sets in Figure 20. Low standard deviation for combined feature set shows more stable 

performance. 

 
Combined feature set Plant level Classification Pixel Level Classification 

Day 5 71.00±8.54% 73.23±9.27% 64.33±9.31% 

Day 6 70.75±8.78% 74.10±9.12% 56.93±10.22% 

Day 7 76.33±7.79% 75.68±8.14% 69.58±8.94% 

Day 8 71.33±8.82% 74.20±8.86% 62.03±10.43% 

Day 9 82.78±7.61% 80.63±8.30% 77.63±7.58% 

Day 10 83.55±6.77% 82.78±7.70% 80.88±7.80% 

Day 11 89.55±5.68% 87.43±6.36% 84.43±7.00% 

Day 12 89.40±5.53% 89.10±6.22% 82.83±7.43% 

Day 13 91.58±5.22% 89.18±5.82% 92.20±5.41% 
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Figure 18: Average Accuracy, Sensitivity, Specificity and positive predictive value (PPV) results using the two-step pixel level classification 

approach. 
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Figure 19: Accuracy of classifier using different set of features. Combining colour information with thermal or depth slightly increases the 

accuracy of the classifier, however combining colour information with thermal and depth improves the accuracy to more than 70% on day 5. 
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Figure 20: Average accuracy results using the combined feature set compared to average accuracy results of both the previous approaches.
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Figure 21: Average Accuracy, Sensitivity, Specificity and positive predictive value (PPV) results using the combined feature set. 
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Consider the projection of combined feature sets using PCA on 1st and 2nd principal 

component, as shown in Figure 22. The projection shows feature values corresponding to a 

couple of healthy plants in diseased regions. One such plant is marked as p47 and is shown 

in Figure 23. This plant was initially not inoculated with disease but showed symptoms of 

disease subsequently during the experiment due to natural transmission. We designed an 

experiment where we marked the plant p47 as a plant inoculated with the fungus. After 200 

random cross-validation trials, we can achieve an average accuracy of more than 95% on 

day 13 as shown in Figure 20. The identification of a naturally diseased plant among the 

non-inoculated plants shows the quality of our features set and reliability of the proposed 

classification method. 

 

Figure 22: Projection of combined feature set on 1
st

 and 3
rd

 principal component after 

performing PCA. The projection shows feature values corresponding to some of the plants 

which were not inoculated with any disease, occur in disease regions. One of these plants is 

marked as p47 and is shown in Figure 23. 
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Figure 23: The plant p47 shown for illustrative purpose the plant was not inoculated with any 

disease but later showed symptoms of the disease. These plants were successfully captured 

by our feature set. 

Conclusions and future directions 

Registration of multi-modal (thermal & visible light) images of diseased plants is a 

challenging task due to the fact that different parts of a diseased plant may express different 

temperature or colour in thermal and visible light images.  For example, there might be local 

variations within thermal image of a diseased plant which might not reflect in the 

corresponding visible light images if the disease symptoms have not yet become visible. In 

such cases, standard feature extraction methods are not able to produce stable features 

which can be used for registration purposes. Similarly, many robust similarity measures 

such as mutual information perform poorly because of these kinds of variations. Therefore, 

we proposed an alternative approach employing silhouettes as global appearance instead 

of directly using intensity values for measuring similarity between two plant regions and 

using it for registration of plant regions in multi-modal images.  

A novel multi-scale method for silhouette extraction of diseased plants in thermal and visible 

light images has been proposed. The method demonstrated high registration accuracy in 

terms of coverage metric and DICE coefficient of the extracted silhouettes when compared 

with the ground truth. We showed that the proposed multi-scale method is highly accurate 

as compared to gradient based methods especially on thermal images. The silhouettes 

extracted using the proposed method were used for registration of multi-modal images of 

diseased plants and we found the registration results to be very promising. The proposed 

silhouette extraction method is not limited to plants and can be extended to silhouette 
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extraction of single/multiple objects in images provided that the objects of interest do not 

overlap. 

In this report, we captured stereo images and calculated the disparity maps from stereo 

pairs of images for depth estimation purposes. In the previous report, we had performed 

image rectification of the stereo images by identifying extrinsic marker points placed on the 

ground level. After image rectification, we compared six different algorithms for disparity 

estimation. In addition to the disparity estimation algorithms mentioned in the report, we 

also tested some other algorithms including (Birchfield & Tomasi, 1999; Felzenszwalb & 

Huttenlocher, 2006; Yang et al., 2010) but these algorithms were found to be highly 

sensitive to the noise content in the diseased plants and,  therefore, we did not include their 

results in our analysis. Our goal was to estimate smooth and accurate disparity maps which 

were insensitive to background noise and noisy patterns in diseased images. The proposed 

multi-resolution method (section 4.2.6) was computationally fast and less sensitive to the 

noise content while simultaneously producing smooth disparity maps at the expense of 

slightly higher RMS and B (bad matching pixels) compared to Graph-cut based (V. 

Kolmogorov & Zabih, 2001) and non-local cost aggregation method (Yang, 2012). When 

compared to the algorithm (Song et al., 2007), proposed in a previous HDC project (CP37), 

the proposed method performed best in all aspects, i.e., RMS error, B and computational 

efficiency. 

In this project, we combine multi-modal features including depth for anomaly detection 

which consists of two parts: the first part of the work was presented in a previous annual 

report which proposes classification approach to detect water deficient regions in canopies. 

The second part proposes classification approaches to detect diseased plants in this report. 

We proposed two different approaches for disease detection: a two-step pixel-level 

classification approach and a plant level classification. Before application of these two 

approaches, we extracted plant regions from the background region. In the first 

classification approach, we combined information to first detect potential diseased pixels in 

a plant and then we classified the plant into diseased or normal plant based on the 

information collected from the potential diseased pixels. The second approach is very 

similar to the water deficient region detection, whereby we directly collect information from 

plant regions. The results showed that by combining colour information with thermal and 

depth information, we can increase the accuracy of disease detection. As a refinement step, 

we combined feature sets from the two approaches and showed that the new feature set 

produced more stable results.  
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We also showed that our feature set was able to identify plants which were not inoculated 

with any disease but later captured the disease probably due to being in close proximity of 

other inoculated plants. Although we were able to detect diseased plants with an accuracy 

of about 95%, there is still need for improvement before this technique can be used at 

commercial scale. Although we can use the same technique across different crops, our 

technique will need further development on different plants and different diseases since 

different plants may respond differently in terms of thermal signature to the same disease 

and therefore further testing is necessary before application. For our experiments, we 

collected the imaging data on a day-to-day basis. There may be some diseases which show 

symptoms of disease just hours before it visibly appears, and so the time interval between 

consecutive images may need to be reduced. 

The techniques reported in this document can be applied to multi-modal image analysis 

problems in several other fields. The silhouette extraction method developed for estimating 

the silhouette of plants can be extended to segmentation of objects in noisy images where it 

is very difficult to segment the object of interest because of blurred boundaries for example 

segmentation of nuclei in microscopic images. Similarly, the multi-modal registration 

algorithm can be extended to registration of any kind of multi-modal image registration 

problem where the objects of interest do not occlude each other. We have found that many 

existing disparity estimation algorithms which produce excellent results on test data set fail 

to produce good quality results on real data in the presence of noise. The disparity 

estimation algorithm proposed in this work can be applied to estimate depth information in 

the presence of noise, especially to the cases with salt and pepper noise. Finally, we have 

shown that by combining multi-modal/channel image data the accuracy of detection of 

anomalies increases, therefore this idea can be extended to automatically scan whole plant 

canopies. 

Liaison with the commercial growers 

To better understand industry requirement and the challenges they face it is important to 

interact with them. Following visits were made to the following Nurseries/Conferences 

during the studentship. 
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Date Place Purpose 

5-6 July 2011 
East Malling 

Research Center 
Attended studentship conference 

7 Jul 2011 BordonHill Nursery 
Discussed options with the nursery to install stereo and thermal 

imaging setup 

9 Nov 2011 
Roundstone 

Nurseries 
Attended BPOA Poinsettia meeting and Grosouth trade exhibition 

17 Jan 2012 
Warwick Crop 

Center 

Presented the potential of thermal imaging for the benefit of growers 

and some initial results. 

06 Feb 2012 
Hellidon Lakes 

Hotel Leicester 
Attended BPOA AGM and Technical Seminar 

28 Nov 2012 
Lancaster 

University 
Presented my work at Herbs Exploratory Day 

04 & 05 July 

2012 
Norton Park Hotel 

Visited different nurseries and presented my work at Studentship 

Conference 

09 & 10 Sep 

2013 

Hilton Puckrup Hall, 

Pershore College 

Visited different nurseries and presented my work at Studentship 

Conference 

Publications 

1. Raza, S.-E.-A. (2014). Multi-variate image analysis for detection of biomedical 

anomalies. University of Warwick. 

2. Raza, S.-E.-A., Prince, G., Clarkson, J., & Rajpoot, N. M. (2014). Automatic 

Detection of Diseased Tomato Plants using Thermal and Stereo Visible Light 

Images. PLoS One (under Review). 

3. Raza, S.-E.-A., Sanchez, V., Prince, G., Clarkson, J., & Rajpoot, N. M. (2014.). 

Registration of thermal and visible light images using silhouette extraction. 

Pattern Recognition (accepted). 

4. Raza, S.-E.-A., Smith, H. K., Clarkson, G. J. J., Taylor, G., Thompson, A. J., 

Clarkson, J., & Rajpoot, N. M. (2014). Automatic Detection of Regions in 

Spinach Canopies Responding to Soil Moisture Deficit Using Combined Visible 

and Thermal Imagery. PLoS One, 9(6), e97612. 

doi:10.1371/journal.pone.0097612 
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Appendices 

 Comparison Disparity Estimation Appendix A:

Figure 24 shows the six images from Middlebury dataset used to compare all the disparity 

estimation algorithms used in our experiments. Images labelled ‘Aloe’, ‘Baby 1’, ‘Bull’, 

‘Flower Pots’, ‘Rocks 1’ were taken from the Middlebury data set whereas the ‘Plant’ image 

shows a sample plant image from our data set. The ground truth disparity map for the first 

five images was also provided with the Middlebury data set. To measure the quality of our 

results, we compute two quality measures as suggested by (Scharstein & Szeliski, 2002). If 

   represents the disparity map estimated by the algorithm being tested and     represents 

the ground truth disparity then we define RMS and B (percentage of bad matching pixels) 

as follows,  
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where                          ,    is the total number of pixels and    is the disparity 

error tolerance.           if      else          . We chose the tolerance value    to 

be 1 pixel for the results presented here.  

Consider the plots shown in Figure 25 to Figure 27. The MRSM algorithm (Song et al., 

2007), aims to produce smooth disparity maps but inadvertently increases the error in an 

attempt to produce smooth disparity maps, resulting in large errors in RMS and B plots as 

compared to all the other algorithms. In Figure 27 we do not include MRSM as it was 

implemented in MATLAB and is expected to be slow compared to the algorithms 

implemented in C/C++. However, efficiency of the algorithm in terms of time is irrelevant if 

the RMS error and B are very high. All the other algorithms produce comparable results for 

RMS error and B as shown in Figure 25 and Figure 26 respectively. 

Figure 27 compares computational efficiency of the algorithms. GCM was found to be 

roughly more than 100 times slower than MRSGM, and NCA was calculated to be at least 

3.5 times slower than MRSGM on the plant images. SGM and BSM performed faster 

computation compared to MRSGM. GCM and NCA were implemented in C/C++ whereas 

MRSGM, SGM and BSM were partially implemented in MATLAB and partially in C/C++. 
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These results lead to the conclusion that although GCM and NCA produce more accurate 

results, they are slow compared to MRSGM, SGM and BSM. 

 

Figure 24: ‘Aloe’, ‘Baby 1’, ‘Bull’, ‘Flower Pots’, ‘Rocks 1’ were taken from Middleburry dataset 

whereas ‘Plant’ image shows a sample plant image from our data set. 

 

Figure 25: RMS plots for five different images from Middlebury dataset shown in Figure 24 

using disparity estimation algorithms in section 3.2. 

Aloe Baby1 Bull 

Flower Pots Rocks 1 Plant 
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Figure 26: B value plots for five different images from Middlebury dataset shown in Figure 24 

using disparity estimation algorithms in section 3.2. 

 

Figure 27: Time taken for disparity estimation of images in Figure 24 using disparity 

estimation algorithms in section 3.2. 

 


